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Crack tip reinforcement by bridging elements: 
modelling the fracture of the matrix material 
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There is a wide range of physical situations where the faces of a crack in a matrix material 
with limited ductility are restrained from opening, a phenomenon known as crack reinforce- 
ment. In quantifying this phenomenon, the simplest way of modelling the behaviour of the 
matrix material ahead of a crack tip is to assume that it deforms in accord with the laws of 
linear elasticity with the crack extending when the stress intensity at the crack tip (the leading 
edge of the restraining region) attains a critical value, K~c, the fracture toughness of the matrix 
material; i.e. the details of the matrix deformation and fracture behaviour are ignored. The 
viability of this K-matrix assumption is examined for the case of a semi-infinite crack in a 
remotely loaded infinite solid, for which the restraining stress between the crack faces 
increases linearly with crack opening until the attainment of a critical opening when the 
restraining stress falls to zero. The analysis defines the range of material parameters for which 
the K-matrix assumption is adequate with regard to the determination of (a) the "applied" 
value of K required for the crack tip and restraining zone to propagate through the solid, and 
(b) the size of the restraining zone when propagation occurs. The K-matrix assumption always 
gives an overestimate of the applied K, but the overestimation is small when the matrix tough- 
ness contribution is small or is dominant. However, when the contributions from the matrix 
toughness and the toughness provided by the restraining material are roughly equivalent, the 
K-matrix assumption leads to a significant overestimate of the applied K, and in this situation 
the matrix material behaviour should be modelled more precisely. 

1. I n t r o d u c t i o n  
There is a wide range of technological problems in 
materials science and engineering where a solid con- 
tains a crack and the crack faces are restrained from 
opening; this leads to a so-called reinforcement of the 
crack tip. Some of these situations have been identified 
by Rose [1]: fibre bridging of cracks in composites, 
restraint due to unbroken ligaments during cleavage 
cracking, rubber-inclusion toughening of structural 
adhesives, craze formation in glassy polymers, aggre- 
gate interlocking in concrete, the repair of cracked 
plates by bonded reinforcements, and part-through 
cracking in laminated plates. These various situations, 
which embrace both microstructural and macro levels, 
can be simulated by a model in which the faces of a 
planar crack are restrained by forces whose average 
behaviour can be represented by an appropriate 
stress-crack opening relationship. Two recent papers 
[1, 2] have addressed this general problem from very 
different perspectives, in that Rose [1] examined the 
situation where the restraining stress increases (linearly) 
with the crack opening, whereas Foote et al. [2] 
examined the situation where the stress decreases with 
crack opening, referring to this phenomenon as strain- 
softening. The results from these two approaches, 
taken together, should be applicable to most of the 
examples referred to in this paragraph. 

With both approaches, it has been assumed that the 
material immediately ahead of the crack tip, i.e. the 
leading edge of the restraining zone, deforms in accord 
with the laws of linear elasticity, with the crack 
extending when the stress intensity at the crack tip 
attains a critical value, K~c, the fracture toughness of 
the matrix material (Mode I crack opening is assumed); 
i.e. the details of the matrix deformation and fracture 
behaviour are ignored (hereafter, this is referred to as 
the K-matrix assumption). Coupling this assumption 
with the additional assumption that the restraining 
material loses its cohesion when the crack opening 
attains a critical value, ~bm, allows one to determine 
the critical value of the "applied" stress intensity 
that is required for the crack tip together with its 
restraining zone to propagate through the solid. An 
obvious question arises as to whether, and under 
what conditions, the K-matrix assumption is valid. 
The present paper addresses this question for the case 
of a two-dimensional semi-infinite crack in a remotely 
loaded infinite solid (Mode I deformation), where the 
restraining stress between the crack faces increases 
linearly with the crack opening, in terms of the 
accuracy of: (a) the determined applied K value, 
and (b) the calculated size of the restraining zone, 
a parameter which is important when making corre- 
lations with experimental crack tip observations. 
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Figure 1 The mode I model of a semi-infinite crack in a remotely 
loaded infinite elastic solid. The restraining zone size is w e . 

2. The appl ied  s t r e s s  i n t e n s i t y  
Fig. 1 shows the Mode I plane strain model of a 
semi-infinite crack in a remotely loaded infinite solid; 
the solid and particularly the material ahead of the 
crack tip, deforms in accord with the laws of  linear 
elasticity. The crack faces are restrained from opening 
by stresses such that the restraining stress-crack open- 
ing law is linear (Fig. 2), with the restraint 
suddenly falling to zero when the crack opening, ~b, 
attains a critical value, q5 m. 

Straightforward application of the J-integral 
approach [3] shows that the applied K value, i.e. KE, 
for the crack tip together with its restraining zone to 
propagate through the solid is given by the expression 

E ffma((t)d(t = + 

E O-m q~m 
R}2 + ( l - v  2) 2 (1) 

where Kjc is the fracture toughness of the matrix 
material; E and v are, respectively, the Young's 
modulus and Poisson's ratio of the matrix material. 

Now if the matrix material ahead of the crack tip 
has a limited ductility, i.e. it is able to deform plastic- 
ally albeit with difficulty, the simplest way of modelling 
this deformation is to confine it to an infinitesimally 
thin zone (Fig. 3) in which there is a constant cohesive 
stress, o-p, such that there is no singularity at the 
leading edge of  this zone. It is also presumed that the 
matrix material fractures (at the crack tip) when the 
relative displacement within this zone attains a critical 
value, (tp (see Figs 3 and 4). In this case, the crack 
tip opening is (tv and not zero as is the case with 
the K-matrix assumption. For this new situation it 
immediately follows, again by application of  the J- 
integral approach, that the critical K value, i.e. Kp, 
for the crack tip together with its restraining zone to 
propagate through the solid is given by the expression 

Kp 2 = Eapq~p if (~m < (tip (2) 
(1 - v  =) 

( ) 
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Figure 3 The Mode I model of a semi-infinite crack in a remotely 
loaded infinite solid; there is a plastic zone ahead of the crack tip. 
The restraining zone size is Wv and the plastic zone size is Rp-Wp. 

and 

if ~b m > (tp (3) 

These results (Equations 2 and 3), which are based on 
the assumption that the matrix can deform plastically, 
may be compared with that (Equation 1) obtained via 
the K-matrix assumption, by inputting the K~c value, 
i.e. [EO'pq~p/(1 --  v2)] 1/2, of the matrix material into 
Equation 1 

E [Op0p + - ~ 1  all  ~m, (tv (4) - 

It then follows from Equations 2, 3 and 4 that 

X 2 O'm~rn 
~2p2 = I + 2ap(bp if (tm < (tp (5) 

K 2 1 -t- (am(tm/2ap(tp) 

= 1 + (a (tm/2apq p)[1 - -  2 

if (tm > ~p (6) 

and it is immediately seen that KE always exceeds Kp. 
Values of KE/Kp for the cases 0m/0p = 0.5, 1 and 2, 
and for values of  O-m/Crp ranging between 0.25 and 2.00 
are shown in Table I. These results show that KE can 
differ appreciably from Kp, and that within the ranges 
of  values 4)m/(tp and a m/ap for which results are given, 
the difference between K E and Kp increases with q~m/q~p 
and a m/%. However, inspection of Equation 6 shows 
that when (tm/(tp is very large, then KE ~ Kp. 

Broadly speaking, therefore, the K-matrix assump- 
tion always leads to an overestimate of  the crack tip 
stress intensity required to propagate the crack tip and 
its restraining zone through the solid. The degree of  
overestimation is small for the two extremes where the 
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Figure 2 The stress-crack opening law for the restraining material. 
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Figure 4 The stress-relative displacement relation for the material 
in the plastic zone. 
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T A B L E  I The ratio KE/K p for different values of q~m/(])p and 

Gm/tip 
T A B L E  II Values of w E and Wp for q = a.lap = 1, and for 
different values of 2 = q~m/l#p 

~brn/q~p = 0.5 ~bm/(~p = 1.0 ~m/~bp = 2.0 Rp qSp 

0.25 1.030 1.061 1.085 
0.50 1.061 1.118 1.155 
0.75 1.089 1.173 1.214 
1.00 1.118 1.225 1.265 
1.25 1.145 1.275 1.310 
1.50 I. 173 1.323 1.348 
1.75 1.199 1.369 1.383 
2.00 1.225 1.414 1.414 

contribution of the matrix toughness to the overall 
toughness is both small and large, with 'the greatest 
degree of overestimation arising when the contribution 
from the matrix toughness and the toughness provided 
by the restraining material are roughly equivalent. 

3. The size of the restraining zone 
As indicated in Section 1, a knowledge of the restrain- 
ing zone size is important when making correlations 
with experimental crack tip observations. Unlike the 
crack tip stress intensity required to propagate the 
crack tip and its restraining zone through the solid, 
where is is easy to obtain an analytical result (see 
Section 2), this is not possible when determining the 
restraining zone size. Instead of using a numerical 
approach, we will assume that the stress retains a 
constant value, o-,, within the restraining zone, a 
situation for which analytical results are readily 
obtained. If 6~ is set equal to 0-m/2 , the results for the 
constant stress case should provide a reasonable guide 
to the behaviour of restraining material with a linear 
hardening law. 

If  the matrix material is assumed to deform elastic- 
ally (i.e. the K-matrix assumption), because the 
restraining crack tip stress intensity is (2/x)Cra(2~wE) L/2 
[4], where we is the size of the restraining zone, match- 
ing of the stress intensities at the crack tip gives the 
expression 

2a, 
KE = K m  + (27ZWE) I/2 (7) 

7Z 

where KE is the "applied" crack tip stress intensity 
needed to propagate the crack tip together with its 
restraining zone through the solid. By analogy with 
Equation 1, for the constant stress restraining law, KE 
is also given by the equation 

E 
K 2 = K2c + (l_v2----- ~ O'a05m (8) 

where 05m is again the crack opening at which the 
restraining stress drops to zero. Thus again inputting 
the Klc value of the matrix, i.e. [Eapdpp/(1 -- v2)] 1/2, 
and writing o, = qap and 05m = 205p, it follows from 
Equations 7 and 8 that the size, w E, of the restraining 
zone is given by the equation 

[ (  l ~  '/2 ( 1 ~'/2] 2 8(1 -- v2)a~wz = 1 + -- (9) 
roE0 m ~ q /  \~qq/ ] 

On the other hand, if due account is taken of the 

8(1 - -  V2)O-aWE 8 (1  - -  Y2)O'aW p W E 

xE~m 7ZE4m Wp 

0.1 1.304 0.206 0.100 2.06 
0.2 1.651 0.239 0.200 1.19 
0.3 2.111 0.276 0.300 0.92 
0.4 2.763 0.320 0.400 0.80 
0.5 3.754 0.371 0.500 0.74 

plastic deformation ahead of the crack tip, as in the 
analysis in Section 2 for Kp, the cohesive stress is % for 
0 < 05 < 05p and a~ for 05p < 05 < 05m, whereupon 
the size Wp of the restraint region (i.e. where 
05p < 0 5 < 05m) is given by the simultaneous equations 
[51 

ql~/i8(1 - v2)a~wp] 
 E05m J = [q + (1 - q) (1 - 

(1-q)O + ( 1 - 0 )  '/2] 
+ 5 lnL -(1 0- J (10) 

V_ 8(1 ~ V2)O'aWp~ 
ql) 

k  E05m J 

= (1 - $ ) ' /2 [q  + (1 - q ) ( 1  - $) ' /2]  

qO In ~-1 + ( 1 -  @),/2] (11) 
2 L1-(1 

with ~J = wp/Rp, and Rp is the combined size of the 
plastic and restraint regions, i.e. where 0 < 05 < 05m. 
The above expressions are valid provided that 
05m > 05p, i.e. provided that 2 > 1; if 05m < 05p~ i.e. 
2 < 1, Wp is of course equal to zero. Equations 10 and 
11 can be used to give wp for prescribed values ofq  and 
2 by elimination of ~. To illustrate the differences 
between wp and WE, consider the special situation 
where a, = %, i.e. q = 1, when Equation 9 reduces 
to 

an expression which is valid for all 2, while Equations 
l0 and 11 simplify to 

nE$r~ j = 1 (13) 

r I s(l = (1 - 
nE05m [ 

(14) 
2 [_1 - (1 O)l/2j 

these being valid for 2 > 1; if 2 < 1, then Wp = 0. 
Results obtained from Equations 12, 13 and 14 are 
shown in Table II. These results clearly show that wE 
can differ appreciably from wp; WE can be larger or 
smaller than Wp depending on the value of qSm/05p. 

4. Discussion 
The present paper has examined the viability of the 
assumption that the material ahead of the tip of a 
reinforced crack deforms in accord with the laws of 
linear elasticity, with the crack extending when the 
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stress intensity at the crack tip attains a critical value 
Ktc, the fracture toughness of the matrix material. 
The viability of this K-matrix assumption has been 
examined for the case of a semi-infinite crack in a 
remotely loaded infinite solid, and where the restrain- 
ing stress between the crack faces increases linearly 
with crack opening. The K-matrix assumption has 
been tested with regard to the value of the applied K 
required for propagation of the crack tip and restrain- 
ing zone, and also the size of the restraining zone. The 
results in Tables I and II clearly show that the K- 
matrix assumption can lead to misleading conclusions 
as regards the values of these parameters. 

In particular the applied crack tip stress intensity is 
overestimated, the extent of this overestimation being 
greatest when the contributions from the matrix 
toughness and the toughness provided by the restrain- 
ing material are roughly equivalent; when the matrix 
toughness contribution is small or is dominant, the 
overestimation is small. Consequently caution should 
be exercised when modelling the response of the 
material ahead of the crack tip. The difficulties arise 
because if this response is assumed to be elastic, there 

is no crack opening at the crack tip itself; on the other 
hand, if the matrix material is able to deform plastic- 
ally, albeit with difficulty, there is a finite crack 
tip opening. The effects of this opening have been 
examined in this paper for the case where the restrain- 
ing stress between the crack faces increases linearly 
with crack opening, but similar conclusions are 
expected for more general restraining stress-crack 
opening laws, where the restraining stress increases 
with crack opening. 
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